A GIS-based back-propagation neural network model and its cross-application and validation for landslide susceptibility analyses
نویسندگان
چکیده
Landslide-susceptibility mapping is one of the most critical issues in Malaysia. These landslides can be systematically assessed and mapped through a traditional mapping framework that uses geoinformation technologies (GIT). The main purpose of this paper is to investigate the possible application of an artificial neural network model and its cross-application of weights at three study areas in Malaysia, Penang Island, Cameron Highland and Selangor. Landslide locations were identified in the study areas from the interpretation of aerial photographs, field surveys and inventory reports. A landslide-related spatial database was constructed from topographic, soil, geology, and land-cover maps. For the calculation of the relative weight and importance of each factor to a particular landslide occurrence, an artificial neural network (ANN) method was applied. Landslide susceptibility was analyzed using the landslide occurrence factors provided by the artificial neural network model. Then, the landslide-susceptibility analysis results were validated and cross-validated using the landslide locations as study areas. Different training sites were randomly selected to train the neural network, and nine sets of landslide-susceptibility maps were prepared. The paper then illustrates the verification of those maps using an ‘‘area under the curve” (AUC) method. The verification results show that the case of the weight using the same test area showed slightly higher accuracy than the weight used for the cross-applied area. Among the three studied areas, the verification results showed similar accuracy trends while using the weight for the study area itself. Cameron showed the best accuracy and Penang showed the worst accuracy. Generally, the verification results showed satisfactory agreement between the susceptibility map and the existing data on the landslide location. 2009 Elsevier Ltd. All rights reserved.
منابع مشابه
Application of Artificial Neural Network in Study Phenomenon of Landslide and Risk Modeling using Geographic Information System (GIS), Case Study: Alamoot Rood Watershed
One of the natural disasters that occurs in abundance in Iran, due to the geological structure, morphological and seismic conditions, and damages the lives and property of people is a landslide. Roodbar Alamoot watershed in the east of Qazvin province is a mountainous region with a high potential for occurrence of landslides. Because of their active status, there is also a growing trend of...
متن کاملApplication of GIS-Based Back Propagation Artificial Neural Networks and Logistic Regression for shallow Landslide Susceptibility Mapping in South China-Take Meijiang River Basin as an Example
RESEARCH ARTICLE Application of GIS-Based Back Propagation Artificial Neural Networks and Logistic Regression for shallow Landslide Susceptibility Mapping in South China-Take Meijiang River Basin as an Example Qing-hua Gong, Jun-xiang Zhang and Jun Wang Guangzhou Institute of Geography, Guangzhou 510070, China Guangdong Open Laboratory of Geo-spatial Information Technology and Application, Guan...
متن کاملپهنهبندی خطر زمینلغزش با استفاده از روش آماری رگرسیون لجستیک در حوضه آبریز لواسانات
18 - Ayalew. L. Yamagishi. H. Marui. H & Kanno. T. (2005). "Landslides in Sado Island of Japan: Part II. GIS-based susceptibility mapping with comparisons of results from two methods and verifications.", Engineering Geology 81. (2005). 432– 445. 19 - Ayalew,l. and Yamagishi, H. (2005):The application of GIS –based logistic regression for landslide susceptibility mapping in the Kakuda-Yaahiko M...
متن کاملApplication of a hybrid model of neural networks and genetic algorithms to evaluate landslide susceptibility
Background: In the last few decades, the development of Geographical Information Systems (GIS) technology has provided a method for the evaluation of landslide susceptibility and hazard. Slope units were found to be appropriate for the fundamental morphological elements in landslide susceptibility evaluation. Results: Following the DEM construction in a loess area susceptible to landslides, the...
متن کاملPredicting air pollution in Tehran: Genetic algorithm and back propagation neural network
Suspended particles have deleterious effects on human health and one of the reasons why Tehran is effected is its geographically location of air pollution. One of the most important ways to reduce air pollution is to predict the concentration of pollutants. This paper proposed a hybrid method to predict the air pollution in Tehran based on particulate matter less than 10 microns (PM10), and the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers, Environment and Urban Systems
دوره 34 شماره
صفحات -
تاریخ انتشار 2010